EQUILIBRE LIQUIDE–VAPEUR ISOTHERME DES SYSTÈMES HEXAMETHYLPHOSPHOROTRIAMIDE–BENZÈNE ET HEXAMETHYLPHOSPHOROTRIAMIDE–TOLUÈNE

MARIE-ANNIE MICHOU-SAUCET, JACQUES JOSE et CHRISTIAN MICHOU-SAUCET

Laboratoire de Chimie Analytique I, Université Claude Bernard (Lyon I), Institut des Sciences de la Matière 43, boulevard du 11 novembre 1918, 69622-Villeurbanne Cedex (France)

(Reçu le 19 juillet 1989)

ABSTRACT

The authors have measured the vapour pressures of the binary systems hexamethylphosphorotriamide (HMPT) + benzene and HMPT-toluene. The measurements were carried out using an isoteniscope built by themselves. The vapour pressures and excess Gibbs free energies of both systems are given. Excess entropies are calculated from $G^{\rm E}$ values previously determined and $H^{\rm E}$ values previously measured in the laboratory.

RÉSUMÉ

Les auteurs ont mesuré les pressions de vapeur des systèmes binaires hexamethylphosphorotriamide (HMPT)+benzène et HMPT+toluène. Les mesures sont réalisées avec un isoténiscope construit par eux-mêmes. Ils donnent les pressions de vapeur et les enthalpies libres d'excès à 298,15 K, 303,15 K, 313,15 K, 323,15 K, 333,15 K et 343,15 K des deux systèmes. Les entropies d'excès sont calculées à partir des G^E précédemment déterminés et des H^E mesurés au laboratoire lors d'un précédent travail.

INTRODUCTION

L'objectif principal de ce travail est de compléter les données thermodynamiques expérimentales concernant les mélanges HMPT-hydrocarbures aromatiques, en vue de l'étude des interactions moléculaires en milieu liquide.

Nous avons déterminé les diagrammes liquide-vapeur de deux systèmes binaires HMPT + benzène et HMPT + toluène dans le domaine de température 298,15-343,15 K. Dans ce but, nous avons mesuré la pression de vapeur des mélanges liquides au moyen d'un isoténiscope construit au laboratoire [1]. L'enthalpie libre d'excès est calculée par la méthode de Barker [2] en ajustant les valeurs expérimentales d'équilibre liquide-vapeur à l'équation de Redlich-Kister.

Nous avons utilisé les valeurs des enthalpies d'excès mesurées à 298,15 K au moyen d'un calorimètre isotherme [3] pour calculer les entropies d'excès de ces mélanges.

PARTIE EXPÉRIMENTALE

Le benzène et le toluène sont des produits PROLABO de pureté 99,5%. Ces hydrocarbures sont purifiés au moyen d'une méthode déjà décrite [1] et la pureté obtenue est de 99,8% (mesurée par C.P.G.)

Le HMPT est purifié par double distillation sur colonne adiabatique sous pression réduite d'azote (25 Pa), la première étant réalisée sur sodium [4]. La pureté du produit mesuré par la technique de Rossini et al. [5] est de l'ordre de 99,98%.

RESULTATS

Tension de vapeur des composés purs et des mélanges

Les pressions de vapeur expérimentales des corps purs ont été ajustées par une méthode des moindres carrés itérative appliquée à l'équation d'Antoine

$$\log P_{\exp} = A - \frac{B}{C+t} \qquad (P_{\exp} \text{ en Pa}; t \text{ en } ^{\circ}\text{C})$$
(1)

Les valeurs de A, B et C pour chaque composé pur ainsi que l'écart-type σ (en Pa) sont indiqués dans le Tableau 1

$$\sigma = \frac{\left[\sum \left(P_{\rm exp} - P_{\rm cal}\right)^2\right]^{1/2}}{n} \tag{2}$$

où *n* est le nombre de points expérimentaux et P_{cal} est la pression calculée d'après l'équation d'Antoine (en Pa). Les données expérimentales relatives

TABLEAU 1

Constantes A, B et C de l'équation d'Antoine et écart-type σ relatif aux composés purs

Composé	A	В	С	σ	
Benzène	9,15767	1279,184	228,060	2	
Toluène	9,55536	1624,888	247,290	15	
НМРТ	9,39933	1921,043	199,054	4	

TABLEAU 2

pur requirient d'interne dennée dans les reist é et i, et i cai l'exp						
<i>t</i> (°C)	P _{exp} (Pa)	δP (Pa)				
Benzène						
25,014	12676	19				
29,896	15802	36				
40,003	24297	88				
50,001	36084	116				
59,999	52104	139				
Toluène						
24,994	3866	-60				
29,946	4964	- 77				
34,997	6284	- 35				
39,994	7918	-24				
44,989	9906	-20				
49,999	12296	-9				
54,997	15152	-6				
60,017	18552	- 3				
64,998	22499	26				
69,948	27100	24				
НМРТ						
24,989	7	0				
30,000	9	1				
40,001	21	2				
50,002	53	4				
59,998	99	3				

Pressions de vapeur des composés purs: P_{exp} . pression expérimentale; P_{cal} , pression calculée par l'équation d'Antoine donnée dans les réfs. 6 et 7; $\delta P = P_{cal} - P_{exp}$

aux hydrocarbures aromatiques et au HMPT (Tableau 2) sont en accord avec les valeurs de la littérature [6,7].

Les pressions de vapeur des systèmes HMPT (1) + benzène (2) et HMPT (1) + toluène (2) ont été mesurées à six températures dans l'intervalle 298,15-343,15 K. Les resultats expérimentaux sont indiqués dans les Tableaux 3 et 4 et représentés dans les Figs. 1 et 2.

Les calculs de G^{E} nécessitant la connaissance des volumes molaires des constituants à l'état liquide, ces derniers sont calculés à partir des données de la littérature [7,8] en admettant une variation linéaire de la masse volumique en fonction de la température [9,10].

Les seconds coefficients du viriel des hydrocarbures aromatiques sont calculés à partir des données de la littérature [9,10].

Le second coefficient du viriel du HMPT a été estimé lors d'un précédent travail à l'aide d'un appareil type Burnett [1] à deux températures 298,15 K et 333,15 K. Nous avons procédé à une interpolation linéaire aux températures intermédiaires.

Pression de vapeur expérimentale P_{exp} , composition de la phase gazeuse y_1 , coefficients d'activité γ_i , enthalpie libre d'excès G^E et écart de lissage sur les tensions de vapeur δP du binaire à différentes températures. $\delta P = P_{exp} - P_{calc}$

$\overline{x_1}$	P _{exp} (Pa)	δP (Pa)	<i>y</i> ₁	γ ₁	γ ₂	GE	
						$(J \text{ mol}^{-1})$	
HMPT (1)-benzène (2)	à 298,15 K					
0,0000	12666	0	0,0000	0,6542	1,0000	0,0	
0,0980	11314	- 147	0,0000	0,5616	1,0400	-122,8	
0,1863	10430	+ 185	0,0001	0,6092	0,9953	-238,4	
0,2893	8475	-122	0,0002	0,6886	0,9573	- 344,4	
0,3914	6930	+24	0,0003	0,7786	0,8986	- 404,1	
0,4587	5858	+ 2	0,0005	0,8301	0,8572	-418,6	
0,6156	3784	+ 25	0,0011	0,9072	0,7753	- 391,1	
0,7336	2424	- 4	0,0020	0,9386	0,7225	- 329,9	
0,7977	1708	- 36	0,0031	0,9546	0,6833	- 282,9	
0,9067	705	+ 34	0,0093	0,9845	0,5660	-166,7	
1,0000	7	0	1,0000	1,0000	0,3964	0,0	
HMPT (1)–benzène (2)	à 303,15 K					
0,0000	15873	0	0,0000	0,4701	1,0000	0,0	
0,0980	14064	-79	0,0000	0,5944	0,9888	-154,1	
0,1863	12418	- 55	0,0001	0,6797	0,9675	-249,2	
0,2893	10631	+93	0,0002	0,7547	0,9367	- 322,3	
0,3914	8715	+43	0,0003	0,8143	0,9008	- 362,9	
0,4587	7379	-90	0,0005	0,8496	0,8729	- 373,8	
0,6156	4800	- 5	0,0011	0,9241	0,7914	- 349,1	
0,7336	3061	- 35	0,0021	0,9679	0,7191	-281,7	
0,7977	2185	+ 8	0,0033	0,9843	0,6808	-227,8	
0,9067	901	- 32	0,0088	0,9983	0,6295	-112,7	
1,0000	9	0	1,0000	1,0000	0,6152	0,0	
HMPT (I	l)-benzène (2)	à 313,15 K					
0,0000	24299	0	0,0000	0,4981	1,0000	0,0	
0,0980	21736	71	0,0001	0,6171	0,9897	- 147,4	
0,1863	18916	-211	0,0002	0,6983	0,9700	-238,7	
0,2893	16347	+154	0,0003	0,7695	0,9414	- 309,1	
0,3914	13442	+86	0,0005	0,8257	0,9079	- 348,3	
0,4587	11406	-123	0,0007	0,8587	0,8820	- 359,0	
0,6156	7437	- 36	0,0017	0,9276	0,8061	- 336,3	
0,7336	4820	+ 80	0,0032	0,9682	0,7375	- 272,9	
0,7977	3417	-3	0,0049	0,9838	0,7001	-221,7	
0,9067	1424	-43	0,0130	0,9979	0,6467	-111,0	
1,0000	21	0	1,0000	1,0000	0,6244	0,0	
HMPT (1)-benzène (2)	à 323,15 K					
0,0000	36075	0	0,0000	0,5367	1,0000	0,0	
0,0980	32225	+15	0,0001	0,6384	0,9916	-138,7	
0,1863	28286	-215	0,0003	0,7108	0,9743	- 227,8	
0,2893	24345	+179	0,0005	0,7781	0,9474	-298,2	
0,3914	20060	+115	0,0009	0,8333	0,9146	- 337,8	
0,4587	17061	-163	0,0013	0,8659	0,8890	- 348,6	

TABLEAU 3 (suite)

$\overline{x_1}$	$P_{\rm exp}$ (Pa)	δP (Pa)	<i>y</i> ₁	γ ₁	γ ₂	GE
1	exp (-	$(J mol^{-1})$
HMPT	(1)-benzène (2)	à 323,15 K				
0,6156	11166	- 47	0,0028	0,9320	0,8161	- 326,4
0,7336	7267	+102	0,0054	0,9697	0,7518	- 264,9
0,7977	5194	0	0,0081	0,9841	0,7166	- 215,6
0,9067	2187	- 59	0,0215	0,9975	0,6636	-108,8
1,0000	53	0	1,0000	1,0000	0,6349	0,0
HMPT	(1)-benzène (2)	à 333,15 K				
0,0000	52108	0	0,0000	0,5432	1,0000	0,0
0,0980	46448	- 30	0,0002	0,6539	0,9911	-137,6
0,1863	40809	-312	0,0004	0,7270	0,9742	- 223,5
0,2893	35233	+ 305	0,0007	0,7904	0,9494	- 290,8
0,3914	29037	+128	0,0012	0,8411	0,9195	- 329,2
0,4587	24779	-230	0,0017	0,8715	0,8956	- 340,0
0,6156	16259	- 55	0,0037	0,9359	0,8241	- 318,9
0,7336	10545	+113	0,0070	0,9735	0,7596	-257,5
0,7977	7621	+40	0,0105	0,9874	0,7255	-208,0
0,9067	3229	- 2	0,0272	0,9988	0,6806	-102,4
1,0000	99	0	1,0000	1,0000	0,6713	0,0
нмрт	(1)-benzène (2)	à 343,15 K				
0,0000	73434	0	0,0000	0,5541	1,0000	0,0
0,0980	65479	- 8	0,0002	0,6614	0,9915	-137,7
0,1863	57555	- 365	0,0006	0,7345	0,9747	-223,6
0,2893	49484	+ 310	0,0011	0,7985	0,9499	-290,0
0,3914	40907	+180	0,0019	0,8481	0,9209	- 327,1
0,4587	35065	- 231	0,0026	0,8764	0,8988	- 337,4
0,6156	23077	- 149	0,0055	0,9343	0,8343	-318,1
0,7336	15180	+ 223	0,0103	0,9688	0,7737	-261,3
0,7977	10884	+7	0,0154	0,9828	0,7384	-214,6
0,9067	4606	-127	0,0402	0,9969	0,6807	-110,4
1,0000	208	0	1,0000	1,0000	0,6417	0,0

Les seconds coefficients du viriel croisé B_{12} sont calculés par combinaison linéaire des coefficients B_{11} et B_{22} relatifs aux constituants purs.

Les seconds coefficients du viriel relatifs aux constituants purs sont rassemblées dans le Tableau 5. L'enthalpie libre d'excès G^E est représentée par l'équation de Redlich-Kister (Fig. 3)

$$G^{\mathsf{E}}/RT = x_1 x_2 (A_0 + A_1)(2x_1 - 1) + A_2 (2x_1 - 1)^2 + \dots$$
(3)

 x_1 et x_2 sont les fractions molaires des composants (1) et (2). Les valeurs des paramètres de l'équation de Redlich-Kister sont indiqués dans le Tableau 6.

Pression de vapeur expérimentale P_{exp} , composition de la phase gazeuse y_1 , coefficients d'activité γ_i , enthalpie libre d'excès G^E et écart de lissage sur les tensions de vapeur δP du binaire à différentes températures. $\delta P = P_{exp} - P_{calc}$

$\overline{x_1}$	$P_{\rm exp}$ (Pa)	δP (Pa)	<i>y</i> ₁	γ1	γ ₂	GE
·	entry (. ,	2 1	• •	.2	$(J \text{ mol}^{-1})$
HMPT (1)-toluène (2) }	298 15 K	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	****		·····
0.0000	3871	0	0.0000	0.8323	1.0000	0.0
0.1245	3370	-24	0.0002	0 7988	1,0000	-65.8
0.2185	2997	-18	0.0002	0.8154	0.9970	-116.4
0,3302	2545	+ 14	0,0007	0.8598	0.9767	- 162.8
0,3502	1989	+ 48	0,0008	0.9224	0,9707	- 102,0
0,45763	1395	54	0,0015	0,9224	0,8829	-173.0
0 7148	945	+ 23	0,0027	1,0037	0,8323	-173,0
0,7140	608	, 25 1	0,0093	1,0052	0,8555	- 125,2
0,8102	357	3	0,0034	1,0082	0,8215	- 70,2
1 0000	552 7	0	1,0000	1,0048	0,0369	- 30,2
1,0000	1	0	1,0000	1,0000	0,9209	0,0
HMPT (l)–toluène (2) à	a 303,15 K				
0,0000	4960	0	0,0000	0,8631	1,0000	0,0
0,1245	4298	- 56	0,0002	0,8167	1,0025	- 58,0
0,2185	3878	+6	0,0004	0,8275	0,9994	-105,5
0,3302	3256	-1	0,0008	0,8673	0,9813	-150,4
0,4596	2569	+ 53	0,0015	0,9265	0,9396	-173,3
0,5763	1812	-62	0,0027	0,9731	0,8915	- 162,2
0,7148	1223	+ 27	0,0054	1,0042	0,8435	- 114,9
0,8102	779	- 10	0,0094	1,0086	0,8329	-70,0
0,8924	467	+7	0,0175	1,0050	0,8519	- 32,3
1,0000	9	0	1,0000	1,0000	0,9436	0,0
HMPT (1	l)-toluène (2) à	313.15 K				
0,0000 `	7933	0	0,0000	0.9417	1,0000	0.0
0,1245	6941	- 37	0,0003	0.8540	1.0052	- 39.5
0.2185	6228	-4	0.0006	0.8488	1.0059	-81.2
0.3302	5270	+2	0.0012	0.8784	0.9924	- 124.9
0.4596	4158	+71	0.0022	0.9322	0.9541	-150.1
0,5763	2940	-110	0.0039	0.9769	0.9074	-142.3
0,7148	2020	+ 67	0.0078	1,0068	0.8605	- 98.9
0,8102	1292	-2	0.0133	1.0102	0.8526	- 57.4
0,8924	744	- 19	0.0248	1.0057	0.8768	-23.7
1,0000	21	0	1,0000	1,0000	0,9844	0,0
НМРТ (1	l)-toluène (2) à	323.15 K				
0.0000	12294	0	0.0000	1.0002	1.0000	0.0
0.1245	10794	- 39	0.0006	0.8796	1.0070	-26.4
0.2185	9691	-9	0.0011	0.8629	1,0105	-64.6
0.3302	8221	-4	0.0019	0.8854	1.0000	-108.0
0.4596	6505	+ 106	0.0036	0.9360	0.9638	-135.2
0,5763	4632	-151	0.0064	0.9799	0.9176	-129.3
0,7148	3150	+ 77	0,0126	1,0091	0,8715	- 88.0
0,8102	2068	+19	0,0214	1,0117	0,8658	-48.2
0,8924	1184	- 38	0,0391	1,0063	0,8948	-17.1
1,0000	53	0	1,0000	1,0000	1,0171	0,0
					-	,

TABLEAU 4 (suite)

x_1	$\overline{P_{exp}}$ (Pa)	δP (Pa)	y_1	γ ₁	γ ₂	G^{E}
-	-		_	-	_	$(J \text{ mol}^{-1})$
HMPT ((1)-toluène (2) à	à 333,15 K				
0,0000	18517	0	0,0000	1,0459	1,0000	0,0
0,1245	16320	-12	0,0007	0,9023	1,0082	-15,6
0,2185	14623	-23	0,0014	0,8775	1,0135	- 50,1
0,3302	12436	- 8	0,0024	0,8951	1,0051	-91,9
0,4596	9850	+151	0,0046	0,9430	0,9709	- 119,0
0,5763	7038	- 29	0,0079	0,9853	0,9262	- 113,5
0,7148	4834	+142	0,0155	1,0126	0,8831	-73,4
0,8102	3162	+ 14	0,0261	1,0137	0,8816	- 35,8
0,8924	1836	-60	0,0472	1,0071	0,9174	- 8,3
1,0000	99	0	1,0000	1,0000	1,0580	0,0
HMPT	(1)-toluène (2)	à 343,15 K				
0,0000	27178	0	0,0000	1,0411	1,0000	0,0
0,1245	23927	- 28	0,0010	0,9060	1,0078	-15,8
0,2185	21441	-35	0,0020	0,8820	1,0128	- 49,9
0,3302	18256	-5	0,0035	0,8979	1,0053	-91,4
0,4596	14492	+118	0,0066	0,9425	0,9733	-119,3
0,5763	10391	- 335	0,0113	0,9826	0,9308	- 115,6
0,7148	7137	+ 188	0,0220	1,0093	0,8880	- 77,8
0,8102	4720	+ 55	0,0370	1,0114	0,8834	- 40,9
0,8924	2706	-109	0,0668	1,0061	0,9125	- 12,6
1,0000	208	0	1,0000	1,0000	1,0328	0,0

Fig. 1. Diagrammes isothermes d'équilibre liquide-vapeur du système HMPT (1)-benzène (2). P, Tension de vapeur (kPa); x_1 , fraction molaire du liquide; y_1 , fraction molaire de la vapeur. 1, T = 298,15 K; 2, T = 303,15 K; 3, T = 313,15 K; 4, T = 323,15 K; 5, T = 333,15 K; 6, T = 343,15 K.

Fig. 2. Diagrammes isothermes d'équilibre liquide-vapeur du système HMPT (1)-toluène (2). *P*, Tension de vapeur (kPa); x_1 , fraction molaire du liquide; y_1 , fraction molaire de la vapeur. 1, T = 298,15 K; 2, T = 303,15 K; 3, T = 313,15 K; 4, T = 323,15 K; 5, T = 333,15 K; 6, T = 343,15 K.

DISCUSSION

On observe que l'enthalpie libre d'excès est négative pour les deux systèmes étudiés. L'augmentation de température déplace les G^E vers des valeurs moins négatives (Fig. 3). Les volumes et enthalpies d'excès des deux systèmes à 298,15 K ont été mesurés au laboratoire [3,11], lors de précédents travaux. On peut constater un bon accord entre le H^E expérimental pour

TABLEAU 5

Second coefficient du viriel B_{ii} (m³ mol⁻¹) et volume molaire V_L (m³ mol⁻¹) à l'état liquide

<u>T(K)</u>	НМРТ		Benzène		Toluène	
	$\overline{B_{11} \times 10^3}$	$V_{\rm L} \times 10^3$	$\overline{B_{22} \times 10^3}$	$V_{\rm L} \times 10^3$	$\overline{B_{22} \times 10^3}$	$V_{\rm L} \times 10^3$
298,15	-6,90	0,175	-1,47	0,089	-2,80	0,107
303,15	-6,62	0,176	-1,40	0,090	-2,62	0,108
313,15	-6,03	0,178	-1,29	0,091	-2,32	0,109
323,15	- 5,44	0,179	-1,18	0,092	-2,08	0,110
333,15	-4,85	0,180	-1,09	0,093	-1,87	0,111
343,15	-4,28	0,181	-1,01	0,095	-1,70	0,112

Fig. 3. Enthalpies libres d'excès G^{E} (J mol⁻¹) en fonction de la fraction molaire du liquide x_1 des systèmes HMPT (1)-benzène (2) (courbes 1 et 2) et HMPT (1)-toluène (2) (courbes 3 et 4) aux températures 298,15 K et 343,15 K.

 $x_1 = 0,5$ et le H^E calculé (Tableau 7) à partir de la relation

$$\left(\frac{\partial (G^{\rm E}/T)}{\partial (1/T)}\right)_{P,x} = H_{\rm cal}^{\rm E}$$
(4)

TABLEAU 6

Paramètres de l'équation de Redlich-Kister aux différentes températures

$\overline{T(\mathbf{K})}$	A ₀	<i>A</i> ₁	A ₂	A ₃
HMPT (1)-	-benzène (2)			
298,15	-0,67582	0,05505	0,00158	-0,30443
303,15	-0,59343	0,03840	-0,02580	0,09622
313,15	-0,55285	0,03179	-0,03132	0,08140
323,15	-0,52005	0,02972	-0,01835	0,05408
333,15	- 0,49191	0,02322	-0,01161	0,08228
343,15	- 0,47284	0,01963	- 0,04195	0,05223
HMPT (1)-	-toluène (2)			
298,15	-0,29800	0,05382	0,16821	
303,15	-0,28684	0,05022	0,16002	
313,15	-0,23164	0,02216	0,19374	
323,15	-0,20333	0,00839	0,21189	
333,15	-0,17396	0,00573	0,22458	
343,15	-0,17005	-0,00403	0,20633	

TABLEAU 7

G^{E} ,	$H^{\rm E}$, $TS^{\rm E}$ et $V^{\rm E}$ des systèmes	HMPT (1)-benzène (2)	et HMPT	(1)-toluène (2)	à 298,15
Κà	la fraction molaire 0.5				

Système	G^{E} (J mol ⁻¹)	$\frac{H_{\exp}^{E}}{(J \text{ mol}^{-1})}$	H_{calc}^{E} (J mol ⁻¹)	$\frac{TS^{E}}{(J \text{ mol}^{-1})}$	$\frac{V^{\rm E} \times 10^{6 \rm b}}{(\rm m^3 \ mol^{-1})}$
HMPT (1)-benzène (2)	- 419	- 793	- 865	- 374	-0,481
HMPT (1)-toluène (2)	- 185	-603	- 627	-418	-0,558

^a Réf. 3.

^b Réf. 11.

Ce calcul est effectué en admettant que H^E est indépendant de la température.

Connaissant G^{E} et H^{E} , on en déduit TS^{E} (Tableau 7, Fig. 4). Les grandeurs d'excès sont toutes négatives, leurs valeurs minima sont observées pour une fraction molaire voisine de 0,5 dans le cas des deux systèmes étudiés.

Pour le système HMPT-toluène, les G^{E} et H^{E} sont (en valeur absolue) plus faibles que dans le cas du système HMPT-benzène. On peut interpréter ces résultats en considérant que la présence du groupement CH_3 du toluène augmente le caractère aliphatique de la molécule, contrariant ainsi les interactions moléculaires entre le groupement P=O du HMPT et le cycle aromatique. Par contre, l'évolution est inverse dans le cas de TS^{E} et V^{E} : la

Fig. 4. TS^{E} (J mol⁻¹) en fonction de la fraction molaire du liquide x_1 des systèmes HMPT (1)-benzène (2) et HMPT (1)-toluène (2) à la température de 298,15 K.

contraction plus importante du système HMPT-toluène doit certainement être accompagnée d'une réorganisation plus importante au niveau moléculaire.

REFERENCES

- 1 M.A. Michou-Saucet, J. Jose, Ch. Michou-Saucet et J.C. Merlin, Thermochim. Acta, 75 (1984) 85.
- 2 J.A. Barker, Aust. J. Chem., 6 (1953) 207.
- 3 J. Jose et Ch. Michou-Saucet, J. Chim. Phys., 77(5) (1980) 459.
- 4 J. Jose, Ch. Michou-Saucet, P. Cléchet et C. Jambon, Thermochim. Acta, 4 (1972) 123.
- 5 B.J. Mair, A.R. Glasgow, Jr. et F.D. Rossini, J. Res. Nat. Bur. Stand., 26 (1941) 591.
- 6 C.J. Willingham, W.J. Taylor, J.M. Pignocco et F.D. Rossini, J. Res. Nat. Bur. Stand., 35 (1945) 219.
- 7 J. Jose, Thèse Doctorat ès-Sciences Physiques, Université Lyon I, 1978.
- 8 TRC Thermodynamic Tables Hydrocarbons, Thermodynamics Research Center, The Texas A & M University System, College Station, TX, U.S.A. (Rèsultats sur feuilles détachable extant, avril 30, 1977, d-3291).
- 9 N. Al-Bizreh et C. Wormald, J. Chem. Thermodyn., 10 (1978) 231.
- 10 C. Tsonopoulos, AIChE J., 20 (1974) 263; 21 (1975) 827.
- 11 J. Jose, J.M. Hytte et P. Cléchet, J. Chem. Thermodyn., 5 (1973) 857.